
This report describes a brief research project on foundartional aspects of systems-of-systems design and operation.  The overarching goal of 
the research was a design approach for composing structures and behaviors such that the resulting systems will be able to function and adapt 
using an available but a priori unknown mix of sensing and communication modalities.  The research reported herein was focused on a model 
problem of deploying and operating fielded medical treatment facilities (MTFs).  The solution to the problem was found to have two coupled 
components:  the optimal location of treatment facilities of prescribed types and the optimal routing and treatment protocols for casualties 
moving through the facility network.  Several approaches to the problem were explored, including:  (1) representing the problem as a resource 
selection problem and formulating this as a nonlinear mixed integer optimization problem; (2) using an abstraction of the problem that 
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1 Executive Summary

This report describes a brief research project on foundartional aspects of systems-of-systems design and
operation. The overarching goal of the research is a design approach for composing structures and behaviors
such that the resulting systems will be able to function and adapt using an available but a priori unknown
mix of sensing and communication modalities. The research reported herein was focused on a model problem
of deploying and operating fielded medical treatment facilities (MTFs). The solution to the problem was
found to have two coupled components: the optimal location of treatment facilities of prescribed types and
the optimal routing and treatment protocols for casualties moving through the facility network. Several
approaches to the problem were explored, including: (1) representing the problem as a resource selection
problem and formulating this as a nonlinear mixed integer optimization problem; (2) using an abstraction of
the problem that interpret system ”compositionality” in terms of dynamical systems on function semigroups;
and (3) modeling the operation of the MTF network using switched mode ordinary differential equation
systems.

2 Introduction and Issues to Be Addressed

Among the most difficult of real-world Systems-of-Systems challenges is the design and operational control of
medical treatment networks that support forces operating in austere environments. Because the effectiveness
of medical operations in the field is crucially dependent on access to diagnostic technology, availability of
medicines and trained medical personnel, and dependable transport services for bringing those in need of
treatment to the facility, the realization of decision support systems for design and operation must account
for interactions within a hierarchy of qualitatively dissimilar kinds of networks including the the treatment
facility networks themselves (the top of the hierarchy) and the logistical support networks, communication
networks, and local human resource (talent-pool) networks. Clearly changes in the operation of any of the
networks playing a supporting role will impact the operation of medical treatment facilities (MTFs). Because
of the complexity of design and operation of fielded MTFs network is high, DARPA has proposed a “toy
problem” that has essential qualitative features of the general problem while being simple enough to explore
mathematical model alternatives for decision support systems. The report that follows provides results and
concepts that address some of the main problem elements within the illuminating context of the toy problem.
The goal is to understand the problem in enough detail that it will be possible to develop techniques that
can be both carefully validated by provably correct solutions to the toy problem while being extensible to
problems of realistic scale.

The report is organized as follows. The next section recaps the problem statement as formulated by
DARPA. We then formulate an optimization problem that seeks to optimize the expected positive outcomes
of treatment in the MTF network while being constrained by the available resources. The solution to the
problem is seen to have two coupled components: the optimal location of treatment facilities of the different
types that have been prescribed and the optimal routing of casualties from the points at which injuries
occur through the network and toward the final treatment outcome states. The problem is represented as a
resource selection problem and modeled as a nonlinear mixed integer optimization problem. Several versions
of the problem are discussed - each having a different level of complexity. A number of general approaches
to solution of the optimization problem are proposed, and a very detailed analysis at the prescribed toy
scale is carried out in order to provide “ground truth” for the general solution approaches that are now
being studied. These solutions are based of relaxation and are discussed in Section 5.2. The techniques
appear to be very fast when applied to the toy problem parameters, and this suggests that the algorithms
will be useful in highly dynamic environments where problem parameters and constraints change over very
short time scales. A parallel model of the dynamic operation of the MTF network involving switched mode
differential equations is given in Section 7.

3 A Stylized Problem in Agile Field Medicine

In a battlefield theater, there are two deployed Role 2 facilities that receive battlefield casualties. From these
facilities casualties are shipped to Role 3 field hospitals, MTF’s. There are thee types:

110− bed MTF 30− bed MTF 10− bed MTF
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Figure 1: Characteristics of MTF Facility Alternatives.

Essential features of the Role 3 treatment facilities of each type are listed in Fig. 1. Further assumptions
that define the stylized problem are as follows:

• Role 2: Casualties enter the system via two Role 2 casualty streams, with each Role 2 facility producing
15 casualties per day. The establish a baseline solution, this number of casualties is assumed to be a
constant, and moreover, it is assumed that the injuries of all casualties are the same. Clearly these
assumptions would be unlikely to hold in an actual theater of operation.

• MEDEVAC and patient outcomes: It is assumed that casualties are moved through the network
of medical treatment facilities (MTS) and eventually leave the network in one of three states: DOW
(the patient died of injuries), RTD (the patient has been returned to duty), or “Moved to Air Base”
– i.e. the patient has gone to a long term care facility and is no longer considered part of the system
being modeled. The actual spatial movement of the casualties is by MEDEVAC vehicles that could
include la ambulance vehicles or flight vehicles —primarily helicopters. For the purpose of the stylized
problem, all MEDEVAC vehicles are regarded as equivalent.

• MEDEVAC from Role 2 to Role 3: The movement from Role 2 facilities is dangerous and the
following assumptions are made: MEDEVAC capacity is always available, and the DOW rate on this
leg of transport is 1.5% per km (Bernoulli).

• MEDEVAC from Role 3 to Role 4: Air Base: Here it is assumed that patients have been stabilized
so thatDOW rate is reduced to .5% per km.

• Geometry:

– There are two Role 2 facilities which are 40km apart;

– Each Role 2 facility is 100km from the Air Base;

– Each Role 3 facility must be a minimum of 25km from the Role 2 facilities to be in the “safe
zone”;

– Each Role 3 facility must be at least 5km from any other Role 3 facility.

• Daily Update Process:

– Patient outcomes for the previous 24 hours in Role 3 facilities are resolved (DOW - RTD - Moved
to Ait Base). We assume for now that the Role 3 facilities discharge all their casualties at the
end of each day. This simplification will be relaxed later.

– MEDEVAC 3→ Air Base is planned and then resolved;

– MEDEVAC 2→ 3 is planned and then resolved.

• Time is not explicitly modeled – transportation is considered to be instantaneous. Section 6 below
relaxes this assumption and represents one of several relaxation approaches that will be discussed.

• Patients can be transported directly from Role 2 to the Air Base. This transportation is unlimited but
with with a DOW rate of 1.5% per km or 1− (0.985100) for the full trip..

• It is assumed that all parties have complete information about the outcomes of every previous step.
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• It is temporarily assumed that all patients who arrive at an MTF stay exactly 24 hours. This will later
be relaxed to assume that patients who arrive at an MTF will stay stay a minimum of 24 hours.

With this setup, the following problem is considered. Problem: What combination of the three types
of Role 3 MTFs provides the best functional capability assuming a deployment cost constraint that the
maximum budget for deployment of the MTFs is $2M.

The solution we seek consists of:

• A list of which Role 3 MTF’s to deploy,
• Their deployment geometry in the field, and
• A policy that determines how to route casualties from the two Role 2 facilities..

Some possible metrics for “best capability” include

η = λ1DOW + λ2DOW ∗ $$ + λ3$$, (1)

where the λk’s tradeoff the cost of deaths from wounds against the cost of providing the facilities. We note
that this cost function will be nonconvex in general.

4 Modeling

The problem set-up is depicted in Fig. 2. There are three types of Role 3 MTF facilities, per the above
problem statement. We assume that there are M1 100-bed units, M2 30-bed units, and M3 10-bed units.
These have costs as listed in the table in Fig. 1. They receive casualties from the two Role 2 facilities.
The total number of Role 3 MTFs is M = M1 + M2 + M3, and we shall label them 1, . . . ,M . For each
facility, let Tij denote the number of casualties arriving at the j-th MTF from the i-th Role 2 facility.
(i = 1, 2; j = 1, . . . ,M), and let Di denote the number of casualties that are directly sent to the air base
from the i-th Role 2 facility (i = 1, 2). There are thus two routes of entry to each Role 3 MTF, one from
each Role 2. There are three departure routes from each Role 3 MTF—one to each of the terminal states
DOW, RTD, and Moved to Air Base. Denote the number of casualties being transported from the j-th Role
3 facility to the Role 4 facility (Air Base) by Sj , j = 1, . . . ,M .

We define siting parameters dij (i, 1, 2, j = 1, . . . ,M) and ej (j = 1, . . . ,M) as follows:

dij = distance of the j-th Role 3 MTF from the i-th Role 2 unit (≥ 25 km),
ej = distance of the j-th Role 3 MTF from the Air Base.

With the routes and facilities thus labeled, we look at state transitions in the model. We note that the routes
of transit must be considered to have the same status in the finite state model as the medical facilities, since
from each of these routes transitions to the DOW state are possible. In each 24 hour period, there will be
transitions to DOW from the boxes labeled Tij , Sj and each MTF with the expected numbers being:

1− 0.985dij , i = 1, 2; j = 1, . . . ,M,

1− 0.995ej j = 1, . . . ,M,

1− 0.985100 for Di i = 1, 2,

0.1/day for 100 bed unit,

0.15/day for 30 bed unit, and

0.25/day for 10 bed unit.

(2)

We assume that the system is in steady state, which means Tij and Di do not vary with the time. Then
there is an upper limit T̄ij for the number of patients that can be sent from the i-th Role 2 facility to the
j-th Role 3 facility due to the limited number of beds and the limited MEDEVAC rate, and it is given by

2∑
i=1

T̄ij × 0.985dij = # of beds in j× (DOW rate in j+RTD rate in j) +MEDEV AC capacity of j. (3)
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Figure 2: Each deployment strategy of Role 3 MTF’s is represented by a finite state system with two sources
(Role 2 care facilities on the left) and three sinks or terminal states (states labeled DOW, RTD, and Moved
to Air Base).

To be more specific, if the j-th Role 3 facility is a 100-bed unit, then∑2
i=1 T̄ij × 0.985dij = 100× (10% + 10%) + 20 = 40;

if the j-th Role 3 facility is 30-bed unit, then∑2
i=1 T̄ij × 0.985dij = 30× (15% + 10%) + 10 = 17.5;

if the j-th Role 3 facility is 10-bed unit, then

2∑
i=1

T̄ij × 0.985dij = 10,

since the MEDEVAC capacity is large relative to the number of the beds in that unit. We can now compute
the average DOW rate of the patients that are sent from the i-th Role 2 facility to the j-th Role 3 facility.
Here we need to consider two cases.

The first case is that the length of stay of all patients in the j-th Role 3 facility is exactly 24 hours which
means ∑2

i=1 Tij × 0.985dij ≤ MEDEVAC capacity of j
1−DOW rate in j−RTD rate in j .

To be specific, the constraints on patients entering each type of facility are∑2
i=1 Tij × 0.985dij ≤ 20

1−10%−10% = 25 for the 100 bed unit;∑2
i=1 Tij × 0.985dij ≤ 10

1−15%−10% = 13.3 for the 30 bed unit.

Clearly, the patients going to the 10-bed unit won’t stay for more than 24 hours due to its relatively large
MEDEVAC rate availability. The constraint in this case is thus∑2

i=1 Tij × 0.985dij ≤ 10 for the 10 bed unit.
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In the case of complete patient turnover in each 24 hour period, the DOW rate of the patients that are sent
from the i-th Role 2 facility to the j-th Role 3 facility is given by

DOWij = 1− # of RTD patients from j + # of patients from j arriving at air base

Tij
, (4)

where the numbers of RTD patients from the Role 3 facilities are given by

Tij × .985dij × 10% for the 100 bed unit,

Tij × .985dij × 10% for 30 the bed unit, and

Tij × .985dij × 5% for 10 the bed unit,

respectively and numbers of patients arriving at the Role 4 (Air Base) are given by

Tij × .985dij × 80%× .995ej for the 100 bed unit,

Tij × .985dij × 75%× .995ej for the 30 bed unit,

Tij × .985dij × 70%× .995ej for the 10 bed unit.

With the above notational conventions and constraints, the baseline optimization problem is to minimize
the total expected casualties entering the DOW state

η =

M1∑
j=1

2∑
i=1

[Tij(1− .985dij × 10%− .985dij × 80%× .995ej )]

+

M1+M2∑
j=M1+1

2∑
i=1

[Tij(1− .985dij × 10%− .985dij × 75%× .995ej )]

+

M∑
j=M1+M21

2∑
i=1

[Tij(1− .985dij × 5%− .985dij × 70%× .995ej )]

+

2∑
i=1

(1− .985100)Di

(5)

subject to ∑2
i=1 Tij × .985dij ≤ 25 ∀ j ∈ {1, . . . ,M1},∑2
i=1 Tij × 0.985dij ≤ 13.3 ∀ j ∈ {M1, . . . ,M1 +M2},∑2
i=1 Tij × 0.985dij ≤ 10 ∀ j ∈ {M1 +M2, . . . ,M1 +M2 +M3},

Di +
∑M
j=1 Tij = 15 ∀ i,

Tij , Di ≥ 0 ∀ i, j,

Tij , Di are integers ∀ i, j, and

All geometry constraints.

(6)

Remarks: (1) This stylized problem setup is somewhat special, and will be subject to generalization and
extensions of many types. For the particular case of precisely two Role 2 facilities through which all casualties
are processed, and with the Role 4 facility having its location determined as 100 km from each of the Role
2 facilities, the distances ej are determined as nonlinear functions of the distances d1j , d2j .

To carry this out explicitly, we choose a Euclidean coordinate system for the theater of operation, Fig.
3. The y-axis passes through the two Role 2 facilities, and the x-axis is the prependicular bisector of the 40
km line segment between these facilities as illustrated. If both the Role 2 facilities are 100 km from the Role
4 facility (Air Base) as depicted, then the Air Base is located on the x-axis

√
9600 km from the origin of the

coordinate system. Given that d1 and d2 denote the distances of the Role 3 MTF from the respective Role
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Figure 3: The distances d1j , d2j of the MTF facilities from the Role 2 medical facilities provide a local
coordinate system for the problem. These coordinates can be easily transformed to Euclidean coordinates
as discussed in the text.

2 facilities, the Euclidean coordinates of the facility are easily determined by the cosine law. Specifically,
elementary trigonometry yields facility coordinates

y = y(d1, d2) =
d22 − d21

80
, x = x(d1, d2) =

√
d22 − (y + 20)2.

We have chosen the positive square root; the negative square root identifies a location at distances d1, d2
on the opposite side of the y-axis. Give the chosen Euclidean coordinates, the distance e from the Role 3
MTF to the Air Base is simply the Euclidean distance ‖(x(d1, d2), y(d1, d2))− (

√
9600, 0)‖. For the present

problem parameters, this is given as

e(d1, d2) =

√
d21 + d22 − 2

√
6
√
−d41 + 2d22d

2
1 + 3200d21 − d42 + 3200d22 − 2560000 + 18400

√
2

. (7)

(2) The importance of noting this functional dependency is that for more general versions of the problem
it will be necessary to classify variables as to whether they are free or determined. Finding functional
relationships of this kind will be key to both the problem solution and to complexity reduction as well. By
way of a further example, if the j-th Role 3 MTF is to be optimally sited with respect to three (or more) Role
2 facilities, the respective distances d1j , d2j , d3j , . . . cannot all be free variables. Indeed, specifying any two
will determine the others. This point is developed further in Section 5.2 below in the context of relaxation
methods.

(3) Transforming the dij variables to Euclidean coordinates allows us to express the constraint that no pair
of MTFs can be closer than 5 km to one another. This requirement is expressed by the nonlinear inequality
constraint

(x(d1,j , d2j)− x(d1,k, d2k))2 + (y(d1,j , d2j)− y(d1,k, d2k))2 ≥ 25.

One of the challenges to be addressed by the research going forward is how to relax such nonlinear relation-
ships in our computational approaches.

The above model will serve as the basis of analysis in several of the sections that follow. A model that
captures the effect of facility congestion is presented in the Section 7. In the next section, we discuss explicit
solution of the stylized problem as formulated above in Section 4. Assuming the total cost limit of $2M for
Role 3 medical facilities is binding and that the cost of each facility type is as given in Fig. 1, there are
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exactly seven possible mixtures of such facilities with collective cost of exactly $2M:

(M1,M2,M3) = (1, 1, 0), (1, 0, 5), (0, 1, 15), (0, 2, 10), (0, 3, 5), (0, 4, 0), (0, 0, 20).

If we include all feasible mixtures of facilities (most mixtures costing strictly less than $2M), then it is not
difficult to verify that there is a total of 59 feasible solutions. We shall show that many of these solutions to
can be discarded, and the choice among those that remain will depend on trading off quality of patient care
agains the cost of deploying the MTFs. An unmodeled utility of the field commander would be the basis of
the deployment choice.

5 The Mathematics of Resource Selection and Operation

5.1 Optimal Provision of Mobile Medical Units and Casualty Routing Policies

We begin the discussion of the stylized problem solution by considering the case in which all casualty
treatments are completed within 24 hours. Following that, we shall take facility congestion into account.
We begin by assuming that the system objective is only to minimize the rate at which casualties die of their
wounds (i.e. λ1 = 1, λ2 = λ3 = 0 in eq. (1)).

5.1.1 The optimal solution when DOW rate is the prime consideration

Lemma 1. If we have only one 100-bed unit, then it must be placed at the intersection of 25 km circles
centered at the Role 2 facilities as indicated by the blue dot in Fig. 4. This point is the unique minimizer
of the DOW rate under the assumption that the MTF resource is a single 100 bed facility.

Proof. Note that one 100-bed unit can receive all patients from the two Role 2 facilities and can transfer all
patients to the air base in 24 hours when it is a minimum of 25km from the two Role 2 facilities. The lemma
can be proved by noting that eq. (5), specializes to

η =
∑2
i=1 15× (1− .985di1 × 10%− .985di1 × 80%× .995e1)

and recalling that e1 is an explicit function of d11 and d21 given by (7). The details of the computation are
omitted here.

Figure 4: The optimai location for single Role 3 facility that has large enough capacity.

Lemma 2. If we have two Role 3 facilities with both of them having enough beds and large enough MEDE-
VAC rates, and if both of them receive patients under an optimal routing protocol, then the optimal place-
ment is indicated by the two blue dots in Fig. 6.
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Figure 5: The map of DOW rate with single 100-bed unit being used and two Role 2 facilities being located
at the lower corners.

Proof. There are two possible cases when we have two Role 3 facilities. The first case is that the two facilities
have the same number of beds. Since we assume they have enough beds and large enough MEDEVAC rates,
it is easy to prove that the optimal locations for the two facilities must be the two blue dots in Fig. 6.

The second case is that the two facilities have different number of beds. Without loss of generality, we
assume that the first Role 3 facility is the more expensive one in terms of $ cost of deployment, and the
second Role 3 facility is the cheaper one. It is easy to prove that there must exist at least one path through
the first Role 3 facility, and the DOW rate of this path is strictly lower than that of all paths through the
second Role 3 facility, otherwise the average DOW rate would be even higher than that with two cheaper
Role 3 facilities. Without loss of generality, we assume that the first Role 2 facility lies on the path with
lowest DOW rate. Then the first Role 2 facility must send all patients to that path because the Role 3 facility
is assumed to have large enough capacity. Since we assume that the cheaper Role 3 facility is also receiving
patients, then those patients must be from the second Role 2 facility. Since we assume the Role 3 facilities’
capacities are large enough, then the reason why the second Role 3 facility sends patients to the cheaper
Role 3 facility must because the path with the cheaper Role 3 facility is the best choice for the second Role
2 facility. Therefore, the second Role 2 facility will send all patients to the cheaper Role 3 facility. In such
case, each Role 2 facility will use only one Role 3 facility. So the the first Role 3 facility will be placed such
that it can minimize the DOW rate of the path connecting the first Role 2 facility and the air base, and the
second Role 3 facility will be placed such that it can minimize the DOW rate of the path connecting the
second Role 2 facility and the air base. The only locations satisfying the requirement are those indicated by
the two blue dots in Fig. 6.

Proposition 1. Consider the problem of optimal mixture of types of MTFs under the assumption that λ1 = 1
and λ2 = λ3 = 0 in eq. (1). The optimal deployment of the three types of Role 3 facilities is then a mixture
of one 100-bed unit and one 30-bed unit. If λ3 � 1, then the optimal mixture of MTF type will involve only
10-bed units.

Proof. It is easy to prove the latter part that only 10-bed units will be used whene $$ is a primary consid-
eration. If λ3 � 1, then the optimal mixture of MTF types will involve only 10-bed units or even no Role 3
facilities in the extreme case. The conclusion is supported by the fact the the decrease of DOW rate is not
proportional to the investment, and the details are shown in Table 1. It is, in short, that the marginal cost
of reducing one unit of DOW increases significantly when the DOW rate decreases. So here we only need
to consider the case that that only 100-bed unit and 30-bed units will be used when the DOW rate is the
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Figure 6: The potential locations for the two Role 3 facilities that have enough capacities.

prime consideration.

Since one 30-bed unit has enough capacity to serve all patients from one Role 2 facility when it is a
minimum of 25km from that Role 2 facility, it is easy to prove that the performance of two 30-bed units
together must dominate the performance of all possible combinations of 30-bed units and 10-bed units. Also
it is easy to prove that the performance of one 30-bed unit and one 100-bed unit together dominates the
performance of two 30-bed units together. Then the only question left here is whether the the performance
of one 30-bed unit and one 100-bed unit together is better than just one 100-bed unit.
By using Lemma 1, we know that the optimal location for one 100-bed unit is the blue dot in Fig. 4. The
total of the expected casualties entering the DOW state in this configuration is

η1 =
∑2
i=1 15× (1− .98525 × 10%− .98525 × 80%× .99583) = 17.0939.

By using Lemma 2, we know that if the 30-bed unit is helpful when we already have one 100-bed unit, then
the optimal locations for them must be the two blue dots in Fig. 6. The total of the expected casualties
entering the DOW state in this configuration is

η2 = 15× (1− .98525 × 10%− .98525 × 80%× .99575)
+15× (1− .98525 × 10%− .98525 × 75%× .99575) = 17.0029.

Thus we will use 100-bed unit and 30-bed unit together when DOW rate is the prime consideration.

Remark: The difference in cost between the optimal and suboptimal deployment costs that conclude the
above proof is very small. Clearly the solution might easily change is any of the constraints are changed,
It’s is also likely that the difference in costs would not be detected by the approximate methods discussed
in Section 6 below.

5.1.2 The investment frontier when trading off deployment costs against quality of patient
care

The analysis of this subsection considers tradeoffs in cost under different facility deployment strategies. We
now relax the assumption that all Role 3 treatments will conclude within 24 hours.

Definition 1. One Role 3 facility is saturated when its average length of stay is greater than 24 hours.

Patients can be transported directly from Role 2 to the Role 4. This transportation is unlimited and free
with a DOW rate of 1− (0.985100) = 0.779.
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The minimum DOW rate of a path with one 10-bed unit is achieved when the path is a straight path
connecting Role 2 and Role 4 with the 10-bed unit being 25km from Role 2 and 75km from Role 4. When
the length of stay in the 10-bed unit is 24 hours and the 10-bed unit is not saturated, the minimum DOW
rate of the path is achieved and it is 0.636 = 1− 0.98525 × 0.05− 0.98525 × 0.7× 0.99575. If the 10-bed unit
is saturated, then the minimum DOW rate of those excess patients is 0.886 = 1− 0.98525/6. Since 0.886 is
even higher than the DOW rate of the free path (0.779), we know the 10-bed unit will never be saturated no
matter how many beds it has.

The minimum DOW rate of a path with one 30-bed unit is achieved when the path is a straight path
connecting Role 2 and Role 4 with the 30-bed unit being 25km from Role 2 and 75km from Role 4. When
the length of stay in the 30-bed unit is 24 hours and the 30-bed unit is not saturated, the minimum DOW
rate of the path is achieved and it is 0.579 = 1− 0.98525 × 0.1− 0.98525 × 0.75× 0.99575. If the 30-bed unit
is saturated, then the minimum DOW rate of those excess patients is 0.726 = 1− 0.98525 × 0.4.

The minimum DOW rate of a path with one 100-bed unit is achieved when the path is a straight path
connecting Role 2 and Role 4 with the 100-bed unit being 25km from Role 2 and 75km from Role 4. When
the length of stay in the 100-bed unit is 24 hours and the 100-bed unit is not saturated, the minimum DOW
rate of the path is achieved and it is 0.555 = 1− 0.98525 × 0.1− 0.98525 × 0.8× 0.99575. If the 100-bed unit
is saturated, then the minimum DOW rate of those excess patients is 0.657 = 1− 0.98525 × 0.5.

We organize the above results as follows:

Path Type Minimum Unsaturated DOW Minimum Saturated DOW
Type 1 Role 3 0.555 0.657
Type 2 Role 3 0.579 0.726
Type 3 Role 3 0.636 0.886

Free Path 0.779 NA

Table 1. DOW.

Now let’s gradually increase out budget from $100k to $2M.

Case 1: Budget ≤ $400K. Clearly, we can have at most four 10-bed units. Since 10-bed units can never
be saturated, we then only need to determine the locations of the 10-bed units by solving the constrained
optimization problem. Since the minimum capacity of the path with one 10-bed units is 14.591 = 10/0.98525

which is smaller than the casuality rate of one Role 2 (15/day), the optimal DOW rate will decrease when
the budget is increased from $100K to $400k, but it must be strictly higher than 0.636.

Case 2: Budget = $500K. Now we can have at most five 10-bed units or one 30-bed unit. It is easy to
prove that the purchase of the fifth 10-bed unit is not useful, and we only need to consider the 30-bed unit.
With only one 30-bed unit, saturation becomes possible because the DOW rate of the excess patients in the
30-bed unit may be lower than the DOW rate along the direct path between the Role 2 and Role 4 facilities.
But the number of patients arriving at the 30-bed unit has an upper limit which is 30 × 0.25 + 10 = 17.5
patients everyday. Thus we need to determine one more variable, the length of stay in 30-bed unit or the
number of patients arriving at 30-bed unit everyday, when solving the constrained optimization problem. It
can be proved that one 30-bed unit can’t beat four 10-bed units. Thus the increase of budget from $400K
to $500K is useless.

Case 3: Budget = $600K. As always, using the budget to only purchase multiple 10-bed units is useless.
We now only consider the case that we have one 30-bed unit and one 10-bed unit. Here, we would have
to solve the constrained optimization problem. It can be proved that the DOW rate here will be further
decreased.

Case 4: Budget = $700K. As always, using the budget to only purchase multiple 10-bed units is useless.
We now only consider the case that we have one 30-bed unit and two 10-bed units. Again, we would have
to solve the constrained optimization problem here. It is expected that the DOW rate here will be further
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decreased.

Case 5: $800K ≤ Budget ≤ $900K. It is easy to prove that we need at most two 10-bed units when we
have one 30-bed unit. The idea is described as follows. First, the location of the 30-bed unit must fall into
the triangle region in Fig. 4, and thus DOW rate of the paths with 10-bed units must be strictly lower than
0.645 = 1−0.98525×0.05−0.98525×0.7×0.99580. So no patients will be transported on the Role 2-to-Role
4 direct path. Second, there must exist at least one path with 30-bed unit whose DOW rate is lower than
that of the paths with 10-bed units because otherwise the optimal DOW rate here would be even higher than
that of Case 3, and this is impossible. Here, the following cases may happen. (1) Only the patients from
one Role 2 are transported to the 30-bed unit. Then all patients from that Role 2 must be transported to
30-bed unit, and all patients from another Role 2 must be transported to 10-bed units. If this case is true,
we only need two 10-bed units. (2) Both the first Role 2 and the second Role 2 transport the patients to the
30-bed unit. If the DOW rate from the first Role 2 to the 30-bed unit is lower than the DOW rate from the
second Role 2 to the 30-bed unit, then all patients from the first Role 2 will be transported to the 30-bed
unit. So only one 10-bed unit will be used. If such case is true, then the purchase of the second 10-bed unit
is useless. However, if the DOW rate from the first Role 2 to the 30-bed unit is equal to the DOW rate from
the second Role 2 to the 30-bed unit, then each Role 2 will use one 10-bed unit, and both 10-bed units are
not saturated. In such case the purchase of additional 10-bed unit is clearly useless. Thus the increase of
budget from $700K to $900K is useless.

Case 6: Budget = $1M. Now we can have 2 30-bed units. Since the minimum capacity of the path with
one 30-bed unit is 19.455 = 10/0.75/0.98525 which is larger than the casuality rate of one Role 2 (15/day),
we can easily get the optimal DOW rate 0.579 with two 30-bed units.

Case 7: $110K ≤ Budget ≤ $140K. There is no basis for purchasing more 10-bed units because the paths
in Case 6 are not saturated. Thus the increase of budget from $1M to $140K is useless.

Case 8: Budget = $150K. Now we can have one 100-bed unit. The minimum capacity of path with one
100-bed unit is 20/0.8/0.98525 = 36.478, so saturation can’t happen here. It must be true that one 100-bed
unit can beat two 30-bed units as the DOW rate with one 100-bed unit is 1− 0.98525× 0.1− 0.98525× 0.8×
0.99583 = 0.570 which is obtained when the 100-bed unit is placed at the location shown in Fig. 4.

Case 9: $160K ≤ Budget ≤ $190K. There is no basis for purchasing any 10-bed units if we have Type 1
MTF3. The reason is given below. First there must exist at least one path with 100-bed unit whose DOW
rate is lower than that of the path with 10-bed unit otherwise the average DOW rate would be even higher
than Case 3. Second, since the 100-bed unit can’t be saturated, then at least one Role 2 station will send
all patients to that 100-bed unit. Another Role 2 will either send its patients to 100-bed unit or 10-bed
unit. If another Role 2 does send patients to 10-bed unit, then the DOW rate of its patients can’t be lower
than 0.636 because 100-bed unit is not saturated. In such case the average DOW rate can’t be better than
(0.636 + 0.555)/2 = 0.596 which is even higher than that of Case 8.

Case 10: Budget = $2M. By Proposition 1, we know the optimal configuration would be placing one
100-bed unit and one 30-bed unit at the locations indicated by the two blue dots in Fig. 6.

The cost and return relationship is graphically represented in Fig. 7 where we use one minus DOW rate
as the measure of return.

5.2 Approaches to Relaxation of the Placement and Routing Problems

Finding a solution to the non-linear mixed integer optimization problem in the above is in general very
difficult as the scale of the problem increases. Thus we resort to approximation and relaxation techniques.

5.2.1 From nonlinear mixed integer optimization to mixed integer hybrid linear programs

In the parameter ranges of interest, the cost function (5) is nonconvex and thus not easily solved with
standard optimization problems. Despite this difficulty, we note that for the ranges of parameters that
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Figure 7: Investment frontier.

specify casualty flows, Tij , the cost of each Type 1 or Type 2 facility

ηj =
∑2
i=1 Tij(1− .985dij × 10%− .985dij × 80%× .995e1)

is not too far from being linear in the location variables, d1j , d2j, as illustrated in Fig. 8. These functional
components are thus well approximated by linear surrogates, and the cost function η in eq. (5) can be relaxed
to

η`in =

M1∑
j=1

a1j(T1j , T2j)d1j + a2j(T1j , T2j)d2j + bj(T1j , T2j)+

+

M1+M2∑
j=M1+1

a1j(T1j , T2j)d1j + a2j(T1j , T2j)d2j + bj(T1j , T2j)

+

M∑
j=M1+M2+1

a1j(T1j , T2j)d1j + a2j(T1j , T2j)d2j + bj(T1j , T2j) +

2∑
i=1

(1− .985100)Di.

(8)

Figure 8: The cost components of the individual Role 3 facilities are in general nonconvex but nearly linear
in the parameter ranges of interest. Two views of a typical facility cost component are plotted for the
parameter ranges 25 ≤ dij ≤ 50.

Because the applicable constrains (6) are also linear, this relaxed version may be solved for each set of
flow parameters Tij using readily available software such as scipy.optimize.linprog, [7]. By cycling through
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Tij-values that are projected to be of interest, selections of MTF types together with their placements may
be determined. At the same time, these approximate linear models may be profitably used in conjunction
with the FIncke and Posht relaxation of the next subsection.
Results: Linear components of the cost function have been found for the cases that were discussed in Section
3. The sensitivities to changes in the patient flow parameters Tij are under investigation.

5.2.2 Fincke and Posht concepts for relaxation of nonlinear mixed integer

One of our approaches to relaxation involves mathematical techniques inspired by the work of Fincke and
Pohst [6]. We illustrate the technique using the example given above. The generalization to other scenarios
is obvious. In our case, the underlying optimization variables are real values dij (as the ej ’s are functions
of d1j , d2j), and integer values Dj , Tij . In general not all dij etc. are independent (This depends on the
geometry). In general, it follows from the implicit function theorem that there exists a set of free variables
Xi, Yi such that every variable dij , Dj and Tij is expressible in terms of Xl, 1 ≤ l ≤ p and Ym, 1 ≤ m ≤ q
with Xl real valued and Ym discrete valued. This means that the objective of design is to find values of Xl

and Ym that optimize an objective function O(X1, · · · , Xp, Y1, · · ·Yq) subject to various contraints of Xl and
Ym. In our example, Xl are the dij and Ym are Ti and Dj .

We will first solve this optimization problem subject by assuming that both Xl and Ym are real valued.
This turns our nonlinear mixed integer programming problem into a real valued nonlinear progarmming
problem. For such problems, there exists numerical solvers (In some cases, these may output sub-optimal
solutions). Let the output of the numerical solver be x1, · · · , xp and y1, · · · , yq. Clearly, the output of
numerical solver may not be a solution to the problem at hand, as the value ym may not be integers.
Consider the integer vector ([y1], [y2], · · · , [yq]) where [A] denotes the nearest integer to A. Consider the
interval

Im = [ym − jm, ym + jm], m = 1, 2, · · · , q,

where jm is a pre-specified positive integer. Then the following algorithm produces a near-optimal solution
to the mixed integer optimization problem of interest.

• Algorithm

– For each integer value (z1, z2, · · · , zq) in I1 × I2 · · · × Iq do

∗ Let (Y1, Y2, · · · , Yq) = (z1, z2, · · · , zq)
∗ Replace these values for (Y1, Y2, · · · , Yq) in both the constraints and the objective function
O(X1, · · · , Xp, Y1, · · ·Yq)

∗ Solve the new optimization problem (non-integer valued nonlinear program) for X1, · · · , Xp.
Let the solution be (u1, u2, · · · , up).

∗ Compute the value

Õ(z1, z2, · · · , zq) = O(u1, u2, · · · , up, z1, z2, · · · , zq).

– If no solutions are found, then output that the mixed-integer nonlinear problem is infeasible.

– Find the value (z1, z2, · · · , zq) that optimizes the value Õ(z1, z2, · · · , zq) and output the corre-
sponding values (X1, · · · , Xp) = (u1, u2, · · · , up) and (Y1, · · · , Yq) = (z1, z2, · · · , zq) as the opti-
mizing values.

• END

Remarks: Clearly the choice of values j1, j2, · · · , jq give various trade-offs between the complexity of search
and optimality of the solution produced by the above algorithm.

5.3 Results

We have coded the Fincke and Posht algorithm in Matlab and the software has successfully returned solutions
that agree with the provably correct results of Section 5.1. The code is several orders of magnitude faster
than exhaustive search. Development is continuing with the aim of finding approaches to optimal algorithm
seeding with feasible initial conditions.
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5.4 Dictionary Building

Although for presentation purposes we have assumed that the problem and its constraints to be static, in
general we do not expect this to be the case. In fact, we expect that in most tactical scenarios, these values
are given by outcomes of some random variables.

Clearly, even in the reduced complexity algorithms outlined above may be too complex to solve if the
constraints are dynamically changing. This means that will need adaptation techniques if the changes in
conditions are small from time to time, or simplified methods of recalculation of the optimizing values in
more general cases. This motivates the use of dictionaries proposed below.

In our setting a dictionary D will be created that lists the constraints and solutions for various cases of
interest. This dictionary may be created off-line, or it may consist of some known scenarios. In one of the
simplest cases, the dictionary may only have one element consisting of the constraints of the last time
update (24 hours earlier stylized problem of Section 2) and the corresponding computed solution.

The dictionary aided optimization algorithm is as follows.

• Dictionary Aided Optimization Algorithm

– Find the ”Closest” scenario in the dictionary D to the present scenario (The closeness metric
must be specified).

– Let the solution of the corresponding dictionary element be (X1, · · · , Xp) = (u1, u2, · · · , up) and
(Y1, · · · , Yq) = (z1, z2, · · · , zq).

– Perform an search analogous to Algorith I with ym replaced by zm (with possibly different pre-
selected values of jm)

– Output the corresponding solution .

• END

Remark: In the event that D has only one element (e.g. with the only element consisting of the constraints
of last time interval, and the corresponding computed solution), then the search build on the intuition that
the underlying solutions may change slowly with time. If there are more dictionary elements, the algorithm
learns more from the ”past experience” and use this learned knowledge to reduce the search complexity.

5.5 Extensions and future work

The stylized problem of Section 3 presents a caricature of an actual theater of operations. Decision support
tools that will be of value in the field will require relaxation of a number of the assumptions in the toy
problem — the most notable of which is that the dynamics of the interacting system components are
stationary. Among the goals for extending the approaches discussed in the preceding sections, there is the
need to validate the computational methods for conducting rapid scenario planning in which the numbers of
casualty streams may change and the daily flows on each stream may vary widely. Software support for such
scenario planning will need to provide worst case bounds on facility capacities in order to identify failure
modes. Work is also needed to be able to provide robustness guarantees for the solutions that are found.

Other possible extensions include considering a finer granularity of MTF types — with certain facilities
having specializations such as for treating burns and hazardous chemical exposures. Further development
of decision support systems should take a variety of potentially disruptive externalities into account. These
include:

1. Compromised operation of a Role 3 MTF due to shortage of medicine, water, or fuel,

2. Changes in capability of moving patients due to unavailability of MEDEVAC vehicles,

3. Consideration of constraints on moving patients related to capabilities of vehicle types — e.g. helicopters
vs. land vehicles,

4. Disruption of routes of transit due to weather, military operations, etc.

Some indication of the complexity of extending the analysis of this report to broader and more realistic
settings is given in the following subsection, where facility saturation and the effects of having treatment
regimens of varying duration in the MTFs are considered. Clearly, significant investment in further research
is needed to realize the objectives of a system-of-systems decision support system for this class of problems.
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5.5.1 The complete nonlinear model

The baseline optimization problem in Section 5.1 is based on the assumption that the length of stay of each
patient in the Role 3 facilities is always 24 hours. Now let’s consider the more general case that allows the
patients to stay for more than 24 hours if such a decision is beneficial.

In order to simplify the calculation, we assume that every day the j-th Role 3 facility only selects from
those patients that arrived 24 hours ago for transportation which means it operates on a last in, first out
(LIFO) protocol. This means that those patients that can’t be transferred to the air base in 24 hours will
stay in the MTF forever until they return to duty or die. (This assumption is made without loss of generality
because the computation of average DOW rate in this case is simpler yet equivalent to other, possibly fairer,
protocols.) By using this idea, we can classify the patients arriving at the j-th facility everyday into two
subgroups with the first subgroup having a 24 hour length of stay and the second subgroup remaining until
they enter one of the two absorbing states DOW or RTD. Although this arrangement is unfair to patients
assigned to the second group, for the purpose of analyzing capacity, it provides good insight. It can be easily
shown that this classification dichotomy has no influence on the average DOW rate.

Proposition 2. In the steady state of the systems, the average DOW rate that is obtained on a last in, first
out (LIFO) basis is equal to the DOW rate that is obtained on a first in, first out (FIFO) basis.

Proof. It is easy to prove that the average DOW rate of the system in the steady state is completely
determined by the values of Tij , Sj , and Di. The above classification clearly can’t change the values of
Tij and Di. Also it is easy to prove that a FIFO basis and a LIFO basis have same Sj since assigning the
priority to the first subgroup won’t change the number of patients sent from the j-th Role 3 facility to the
Air Base.

It is easy to see that the DOW rate of a patient that was sent from the i-th Role 2 facility to the j-th
Role 3 and then fell into the first subgroup is equal to the the DOW rate of the first case in the baseline
model of Section 3. And the DOW rate of a patient that was sent from the i-th Role 2 facility to the j-th
Role 3 and then fell into the second subgroup is thus given by

1− .985dij × RTD rate in MTF
DOW rate in MTF+RTD rate in MTF .

To be more specific, the DOW rate of a patient in the second subgroup is

1− .985dij × 10%
10%+10% = 1− 0.5× .985dij for 100 bed unit,

1− .985dij × 10%
15%+10% = 1− 0.4× .985dij for 30 bed unit,

1− .985dij × 5%
25%+5% = 1− 1

6 × .985dij for 10 bed unit.

Then the average DOW rate of all patients in the general case of MTF stay possibly longer than 24 hours
would be the weighed average of the DOW rates of the two subgroups. (As always the patients in 10-bed
unit can’t be classified into the second subgroup.)
Thus the DOW rate of the patients that are sent from the i-th Role 2s facility to the j-th Role 3 facility in
the second case can be given by

DOWij =
Tij,1
Tij
×DOW rate of the first subgroup +

Tij,2
Tij
×DOW rate of the second subgroup of the general case

=
Tij,1
Tij
×DOW rate of the baseline case +

Tij,2
Tij
×DOW rate of the second subgroup of the general case,

(9)

where .985dij × Tij,1 is the number of patients that were sent from the i-th Role 2 facility to the j-th Role
3 and then fell into the first subgroup, and .985dij × Tij,2 is the number of patients that were sent from the
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i-th Role 2 facility to the j-th Role 3 and then fell into the second subgroup. These variables satisfy the
following constraints

2∑
i=1

Tij,1 × .985dij ≤ 25 for 100 bed unit,

2∑
i=1

Tij,1 × .985dij ≤ 13.3 for 30 bed unit,

2∑
i=1

Tij,1 × .985dij ≤ 10 for 10 bed unit.

2∑
i=1

Tij,2 × .985dij ≤ 20− 0.2×
2∑
i=1

Tij,1 × .985dij for 100 bed unit,

2∑
i=1

Tij,2 × .985dij ≤ 7.5− 0.25×
2∑
i=1

Tij,1 × .985dij for 30 bed unit,

2∑
i=1

Tij,2 × .985dij ≤ 3− 0.3×
2∑
i=1

Tij,1 × .985dij for 10 bed unit.

(10)

The general model DOW rate is thus given by

DOWij =
Tij,1(1− .985dij × 10%− .985dij × 80%× .995ej )

Tij
+

Tij,2(1− 0.5× .985dij )

Tij
for 100 bed unit,

(11)

DOWij =
Tij,1(1− .985dij × 10%− .985dij × 75%× .995ej )

Tij
+

Tij,2(1− 0.4× .985dij )

Tij
for 30 bed unit,

(12)

and

DOWij =
Tij,1(1− .985dij × 5%− .985dij × 70%× .995ej )

Tij
+

Tij,2(1− 1
6 × .985dij )

Tij
for 10 bed unit.

(13)

As in Section 3, the Role 3 MTF’s are labeled so that 1 . . .M1 are the 100-bed facilities, M1+1, . . . ,M1+M2

are the 30-bed facilities, and M1 +M2 + 1, . . .M1 +M2 +M3 = M are the 10-bed facilities.
The cost function of the total expected casualties entering the DOW state is thus given as

η =

M1∑
j=1

2∑
i=1

[Tij,1(1− .985dij × 10%− .985dij × 80%× .995ej ) + Tij,2(1− 0.5× .985dij )]

+

M1+M2∑
j=M1+1

2∑
i=1

[Tij,1(1− .985dij × 10%− .985dij × 75%× .995ej ) + Tij,2(1− 0.4× .985dij )]

+

M∑
j=M1+M21

2∑
i=1

[Tij,1(1− .985dij × 5%− .985dij × 70%× .995ej ) + Tij,2(1− 1

6
× .985dij )]

+

2∑
i=1

(1− .985100)Di,

(14)
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subject to

2∑
i=1

Tij,1 × .985dij ≤ 25 ∀ j ∈ {1, . . . ,M1},

2∑
i=1

Tij,1 × .985dij ≤ 13.3 ∀ j ∈ {M1, . . . ,M1 +M2}.

2∑
i=1

Tij,1 × .985dij ≤ 10 ∀ j ∈ {M1 +M2, . . . ,M1 +M2 +M3}

2∑
i=1

Tij,2 × .985dij ≤ 20− 0.2×
2∑
i=1

Tij,1 × .985dij , ∀ j ∈ {1, . . . ,M1},

2∑
i=1

Tij,2 × .985dij ≤ 7.5− 0.25×
2∑
i=1

Tij,1 × .985dij ∀ j ∈ {M1, . . . ,M1 +M2},

2∑
i=1

Tij,2 × .985dij ≤ 3− 0.3×
2∑
i=1

Tij,1 × .985dij ∀ j ∈ {M1 +M2, . . . ,M1 +M2 +M3},

Di +

M∑
j=1

1∑
k=1

Tij,k = 15 ∀ i,

Tij,1 + Tij,2 = Tij ∀ i, j,
Tij,1, Tij,2, Tij , Di ≥ 0 ∀ i, j,
Tij , Di are integers ∀ i, j, and

All geometry constraints.

(15)

Remark 1. In the toy problem, as we can see from the discussion about the investment frontier, there is
no loss of generality in restricting to assuming all patients leave Role 3 facilities at the end of each 24 hour
period as all routings on the investment frontier involves no saturated paths.

6 Enumerative techniques for system-of-systems decision support

As demonstrated by the detailed analysis of Section 5.1, counting arguments and enumeration of feasible
cases can be a useful means of narrowing the range of solutions to complex resource allocation problems. In
the case of the problem considered in this report, even if the budget for deployment of MTFs is increased, the
numbers of possible combinations of the three Role 3 MTF types are fairly easy to describe. For investment
thresholds of $2M (the case of Section 4), $4M, $8M, and $16M, for instance, the possible combinations of
Role 3 facilities at exactly these costs are 7, 18, 57, and 198, respectively. Of course, as in Section 5.1.1, the
actual mixtures of facility types that are worth considering are expected to be much fewer in number.

Future work on enumerative approaches to composition of system components may be informed by the
team’s prior work on semigroups of partial functions. By way of a brief summary, following [1], we recall
Green’s equivalence relations on semigroups as follows.

Definition 2. Let (S, ◦) be a semigroup. The following four equivalence relations R,L,D,H are called
Green’s relations: For f, g ∈ S,

1. fRg ⇔ f ◦ S = g ◦ S;

2. fLg ⇔ S ◦ f = S ◦ g;

3. D = R ∨ L; and

4. H = R ∧ L.
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These definitions can be specialized in the case that (S, ◦) is the semigroup of partial functions on a set
X. (Recall that f is a partial function on X if f maps a subset called Dom f ⊆ X onto another subset
Ran F ⊆ X. The set of all partial functions on a set is a semigroup under the operation of normal function
composition under the convention that in the case that Ran f ∩Domg = ∅, g ◦f is just the empty function.)

Proposition 3. Let (S, ◦) be the semigroup of partial functions on a finite set X. The equivalence relations
of Definition 2 can be rendered as

1. fRg ⇔ Ran f = Ran g;

2. fLg ⇔
{

Dom f = Dom g and
f(a) = f(b)⇔ g(a) = g(b)

;

3. fDg ⇔ the cardinality of Ran f equals the cardinality of Ran g; and

4. fHg ⇔ fRg and fLg.

From this proposition, it follows immediately that if (Sn, ◦) denotes the semigroup of partial functions
on a set with n elements that there are n+ 1 D classes in Sn. Counting the numbers of R,L, and H classes
is a bit more complex. We recall the following:

Proposition 4. ( [1]) Let RDk
,LDk

,HDk
denote, respectively, the numbers of R,L, and H subclasses of

the k-th D class. These are given explicitly by

1. RDk
=

(
n
k

)
;

2. LDk
= S(k + 1, n+ 1), where S(m,n) is the Stirling number of the second kind, denoting the number

of ways of partitioning n elements into m cells;

3. HDk
=

(
n
k

)
· S(k + 1, n+ 1).

{x, y} {x, z} {y, z}

{{x, y}, z} f11 = {x, y}

g11 = {y, x}

f12 = {x, z}

g12 = {z, x}

f13 = {y, z}

g13 = {z, x}

{{x, z}, y} f21 = {x, y}

g21 = {y, x}

f22 = {x, z}

g22 = {z, x}

f23 = {y, z}

g23 = {z, x}

{x, {y, z}} f31 = {x, y}

g31 = {y, x}

f32 = {x, z}

g32 = {z, x}

f33 = {y, z}

g33 = {z, x}

{x, y} f41 = {x, y}

g41 = {y, x}

f42 = {x, z}

g42 = {z, x}

f43 = {y, z}

g43 = {z, x}

{x, z} f51 = {x, y}

g51 = {y, x}

f52 = {x, z}

g52 = {z, x}

f53 = {y, z}

g53 = {z, x}

{y, z} f61 = {x, y}

g61 = {y, x}

f62 = {x, z}

g62 = {z, x}

f63 = {y, z}

g63 = {z, x}

Figure 9: The D-class D2 in S3. The rectangles bounded by horizontal lines define the L-classes, the
rectangles bounded by vertical lines define the R-classes, and the small rectangles defined by the intersections
define the H-classes.
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6.1 An enumerative approach to “compositionality”

To study “compositionality” at a finer level of granularity, we consider L classes associated with each sub-
domain and each subdomain size—m,m+ 1, . . . , n. The numbers of subdomains of size m are(

n
m

)
,

(
n

m+ 1

)
, . . . , 1.

Consider the functions from the “full domain”

f : Xn → Yj , j = 1, . . . ,

(
n
m

)
,

where Yj = j-th m-element range. For each Yj and each partition of Xn into m cells, there are m! functions
mapping Xn to Yj .

Function composition can be used as an abstraction for modeling assignment of resources to address
situational needs. The construct of L classes is of interest in connection with models in which there are
classes of situational needs that are mitigated by common sets of resources. The concept of right inverses
in Sn can be employed to map resources in a 1-1 fashion back to situational needs. Right inverses assign
representative elements of Xn to each cell in the domain partition associated with the L-class.

6.2 Complexity and generality of semigroups of partial functions on finite sets

The number of partial functions on a set with n elements is (n + 1)n. There is no significant additional
generality in studying sets of functions mapping one finite set to another, f : Xn → Ym, say, because such
function will be members of the semigroup of partial functions on the n+m-element union Xn ∪ Ym.

6.3 Elementary aspects of function composition

The data-processing theorem of information theory states that if Xn represents data from an experiment,
and and there is a function f mapping Xn to a (possibly proper) subset of Xn, there can never be more
information about the data in f(Xn) than there is in Xn itself. The essential idea is captured by the
following:

Theorem 1. The function that maximizes information preservation, H(f(X̃)) for a finite valued random
variable X minimizes the conditional entropy H(X̃|f(X̃)).

Proof: Using notation that can be found in any standard text on information theory, we have

I(X̃; f(X̃)) = H(X̃)−H|f(X̃))

= H(f(X̃)).)

�

Despite the unavoidable compression of information that is frequently encountered in mapping one set
to another, the approaches to applications that will be developed show that the most relevant information
is frequently preserved. To set the stage for applications, a few basic results on the composition of partial
function will be presented.

Proposition 5. For any f, g ∈ Sn, it is generally not the case that f ◦ g D g ◦ f .

The proposition is most easily understood in terms of how elements in a domain partition associated
with an L-class are mapped. Looking at the functions in the D-class D2 in Fig. 9, we see that f11 and g11
map X3 = {x, y, z} to {x, y}. The common range of these two functions is mapped to one of the cells in the
domain partition that is defined by their L-class—namely {x, y}. For any function h in the same L-class,
we find that h ◦ f11(ζ is constant for ζ ∈ X3. Similarly for g11. Hence, for all h such that hLf11, we have
h ◦ f11 ∈ D1. Considering similar possibilities, it is easy to find pairs of functions f and g in the table of
Fig. 9 such that f ◦ g ∈ D2 but g ◦ f ∈ D1.

This very simple observation implies that the order in which function composition if carried out matters
in terms of data compression. It can also have consequences in terms of algorithmic complexity of optimal
composing functions.
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6.4 Right and left inverses, partitions, partial identities, and connections with
axiomatic category theory

The notions of composition of partial functions on a given set are similar in certain respects to aspects of
axiomatic category theory as developed in early work of Eilenberg and MacLane, [2]. In particular, for any
partial function f on a finite set X, we define partial identities

Rf = {(x, x) : x ∈ Dom f}, and
Lf = {(f(x), f(x)) : x ∈ Dom f}.

Interpreted as functions, these clearly have the property that Lf ◦ f = f and f ◦Rf = f . These are clearly
similar to the left and right identity objects defined in [2]. In [2], compositions of functions f : X → Y and
g : Y → Z are defined only when Dom g = Ran f . By relaxing this requirement to Ranf ⊆ Dom g, we are
able to prove the existence of right inverses.

Definition 3. Let S be a semigroup of partial functions. Given f ∈ S, f` is said to be a left inverse of f if
f` ◦ f(x) = x for all x ∈ Dom f . fr is said to be a right inverse of f if f ◦ fr(x) = x for all x ∈ Ran f .

Because functions need not be 1-1 onto their ranges, left inverses need not exist. Right inverses always
exist, but they are generally not unique. This is the content of the following:

Proposition 6. Let S be a finite semigroup of partial functions, and let f ∈ S. There exists at least one
function fr ∈ S such that f ◦ fr(y) = y for all y ∈ Ranf .

Proof: For each y ∈ Ran f let Uy = {x : f(x) = y}. Clearly ∪y∈Ran fUy = Dom f . We define fr to be a
function that assigns to each y ∈ Ran f a single element in Uy. Because there are finitely many elements
in Ran f and because each Uy is a finite set, this construction can be carried out, and it yields the desired
right inverse. �

6.5 Partial function representations of resource allocations in SAROPS

Problems of optimal resource allocation in search and rescue optimal planning systems (SAROPS) are well
represented by the function composition abstraction described above. Search and rescue systems are viewed
as small categories whose objects are sets made up of subsets whose elements are system resources, mission
requirements, operational constraints, behaviors, operating scenarios, and possibly other system elements.
Each of the subsets is referred to as a block, and the morphisms between blocks are finite functions mapping
mapping one block to another. Within this abstraction, composition is just the usual composition of category
theory—or more concretely, the usual notion of composition of functions or mapping on finite sets. In addition
to blocks and mappings, a very important part of this abstraction is composition protocols that specify the
order in which functions are evaluated.

Equivalence relations are frequently represented by simplices. D. Spivak, for instance, has introduced the
notion of an olog or ontology log, [3]. Also introducing the notion of aspects functional relationships among
objects may be established. Indeed, Spivak views aspects informally as ways of viewing objects and more
formally as functions in the sense in which we have been using the term in the above.

In another direction, we wish to study the use finite sets of partial functions to allocate resources so as
to meet situational requirements while satisfying operating constraints. As a simple example, suppose the
are four classes of resources for search and rescue:

R1 Land vehicle with large personnel capacity.

R2 Land vehicles with large cargo capacity,

R3 Air vehicles with capability of landing in wilderness terrain,

R4 High speed air vehicles with reconnaissance capability.

In addition, we assume that there are four classes of mission requirements:
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S1 Multiple stranded disaster victims in a single location.

S2 Stranded disaster victims in multiple locations,

S3 Stranded victims in wilderness locations,

S4 Stranded victims in unknown locations.

An important distinction between classes S1 and S2— is that S1 envisions requiring a single vehicle
picking up individuals from a single location and returning to base, whereas S2 requires a single vehicle to
visit multiple locations to complete its mission. This notional example set thus illustrates the possibility of
multiple levels of granularity in requirement classes. Continuing in this fashion we also specify classes of
operating constraints, that affect the optimal selection of resource allocation functions as discussed below.
To keep this stylized example maximally simple, we consider two classes of constraints:

C1 Weather related constraints that affect the allocation of resources to each mission
type as well as mission execution,

C2 Roadway and flight corridor disruptions.

6.6 SAROPS scenario planning

Situational requirements are specified by lists of requirements –e.g. (s11, s12, . . . , s1m1
, s21, . . . , s2m2

, s31, s41)
where, for each of the four classes of search and rescue missions designated by the first subscript i, si,j is a
vector specifying essential details of the mission requirements with some components giving coordinates of
the rescue site and other coordinates giving other mission parameters, such as the number of people needing
to be rescued from the site(s). To keep the discussion within the chosen mathematical domain , it is necessary
to employ a quantizer for continuous data such as geographic coordinates. The situation represented in this
example has m1 occurrences of disaster victims in locations that each require deployment of one or more
vehicles with adequate capacity that will return those that are rescued to the base station. There are also
m2 groups victims in scattered locations for which a single vehicle can sequentially traverse the locations to
effect the rescue of all victims in the groups. There is also one individual needing rescue from a wilderness
location and one individual whose location is not known. The numbers of people in the m1 groups associated
with class S1 requirements are elements of the vectors s11, s12, . . . , s1m1 ; the numbers of people in groups
associated with S2 requirements are s21, . . . , s2m2

; and we shall assume that m3 = 1,m4 = 1 (there is only
single group in each rescue class S3,S4), and the vector components that specify the number of people
needing rescue in each of the the type 3 and 4 missions is 1 for both s31 and s41 (there is only one person
requiring rescue from difficult-to-reach wilderness, and only one person whose location is not known.).

Weather related constraints are given in a living dictionary (wiki) of historical weather conditions. To
utilize this dictionary, there is also a continuously updated set of availability/usability functions that map
weather conditions to the resource set. These dictionaries are constructed over time, as the system gains
experience. The road and flight corridor network constraints can be more model based and serve to model
the possible inability of some of our vehicle resources may be unable to operate in certain edges in our road
or flight corridor networks.

We also define resource sets associated with each resource class. Specifically, we label each resource in
each class, and let Rk = {rk1, . . . , rknk

} denote the set of the nk resources in class Rk (k = 1,2,3,4). The
entire resource set is ∪4k=1Rk. Pursuing the example in the case that m1 = m2 = 1, but s11 > 1, s12 > 1, we
consider deployment of resources to meet requirements. Consider a resource set

{r11, r12, r13, r21, r22, r31, r32, r41, r42},

where the meaning of the notation is that there are 3 personnel carrying vehicles, (labeled r1,j , j = 1, 2, 3)
two cargo carrying vehicles, two wilderness capable air vehicles, and two reconnaissance vehicles. At this
point, we encounter a constraint on allocation of resources—namely that the number of people to be rescued
may exceed the capacity of any of the resource vehicles, in which case it is required to either deploy multiple
vehicles or else carry out sequential trips between the operations base and the rescue site. The magnitudes
of the numbers sij will determine the numbers of vehicle trips that will be needed to complete the rescue
mission. The most desirable circumstance is that in which the available resources are adequate to complete
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the mission in a single deployment form base. That is to say, the preferred case is when no ground or air
vehicle needs to make multiple trips. An example of this situation is the case of resource and requirement
sets

R = {r11, r12, r13, r21, r22, r31, r32, r41, r42}, S = {s11, s21, s31, s41},

under the following assumptions:

1. The number s11 is too large for the entire group to fit into a single personnel carrier, but it is small
enough to fit into two such vehicles;

2. s21 is also too large to fit into a single personnel carrier, but small enough to fit into two;, and

3. Cargo carriers may be used to transport people if necessary.

It is further assumed, for the sake of simplicity that s31 = s41 = 1, and under these assumptions, a coordinate
SAR mission is feasible because by using any mixture of personnel and cargo carriers (four vehicles in total),
all rescue and reconnaissance requirements can be met. Recalling that the sij represent both the numbers
of individuals requiring each type of rescue and labels for the type of rescue, a typical allocation function is

f(r11) = s11 f(r21) = s21
f(r12) = s11 f(r31) = s31 = 1
f(r13) = s21 f(r41) = s41 = 1,

meaning that vehicles r11 and r12 are both employed to meet requirement s11 and vehicles r13 and r21 are
both assigned to requirement s21. Obviously, this is only one of a number of ways to assign resources to
this particular mission requirement. In the language of Section 1 above, all resource assignment functions
that meet the requirements are in the R-class associated with the range value {s11, s21, 1, 1}. Because of the
assumed interchangeability of rescue vehicle assets, it is easy to see that there are 20 subsets of the resource
set R that can satisfy the mision requirements. For each such subset, there are three ways to group the
resources to be assigned, and hence we have 60 H classes of allocation functions. Within each H class, there
two ways to assign vehicle sets to rescuing groups s11 and s21. There are thus a total of 120 possible ways
to assign rescue assets in this example problem.�

Remark 2. The example serves to illustrate intrinsic complexity in managing deployment of assets in SAR
applications, and such complexity will undoubtedly be a part of other application (e.g. urban infrastructure
system emergencies) as well. A few observations are in order:

• There is a need for additional notions of equivalence of asset assignment functions that account for
features specific to the application. In the example at hand, it is more useful to consider ranges of group
sizes s11 and s21, because as long as the rescue vehicles can be assigned in the same way, difference in
sizes of the groups being transported are unimportant. More generally, care must be taken in defining
abstractions so as to avoid combinatorial explosions to the greatest possible extent.

• On the flip side of the combinatorial explosion problem, research is needed to identify what parts of
proposed models of functional composition lead to NP-hard problems and to what extent can greedy
and other sub-optimal approaches suffice.

7 Compositionality and Service Protocols for Deployed Medical
Treatment Facilities

A scenario in which it will be important to consider protocol alternatives for deployment of resources is
depicted in the figure. Medevac transportation will be needed in this setting of deployed treatment facilities
in which casualties arrive at field treatment facilities and must be transported to primary treatment facilities
that are varying distances away. The medevac vehicles that do this have limited capacities, and once one of
them picks up casualties, it will be unavailable for further service until it discharges those it is carrying at
the destination primary treatment facility. The primary treatment facilities are a various distance from the
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Figure 10: Medevac vehicles must be dispatched to transport casualties from field treatment facilities (FTF’s)
to primary treatment facilities. The FTFs serve as the earliest staging areas for casualties from the theater
of operations. Arrivals at the i-th FTF are Poisson with rate λi.

field treatment facilities, and some of these distances are great enough that the travel time is concerning in
terms of having the medevac vehicle effectively out of service for the duration of the trip.

We assume that casualties arrive at the field treatment facilities (FTFs) at Poisson rates λi, and these
rates remain stationary for the time intervals being modeled. For a given facility, the expected number of
casualties arriving in a time interval [0,T ] will be λT . There is urgency in transshipping arriving casualties
to primary treatment facilities, and for this reason the model would require n > λT if there is only one
medevac vehicle of capacity n and one FTF from which travel time to the nearest primary treatment facility
is T .

7.1 Medevac vehicle routing protocols.

We consider three different routing protocols. We offer some analysis of the baseline case in which there is
a single field treatment facility (FTF) being served by a single medevac vehicle. The additional complexity
of multiple facilities and multiple vehicles is left to future work.

Deployment protocol 1: Continuous circulation of the medevac vehicle making the round trip from
FTF to the primary treatment facility in T units of time.. Clearly we must have λT < n. If λT � n, then
this is a wasteful use of the vehicle resource. On the other hand, if λT ∼ n, there will frequently be larger
numbers of casualties than can be transported, and our modeling assumes that those left behind will be at
grave risk.

Figure 11(a) indicates that if the round trip time for the vehicle is < 1
4 ·

n
λ , then there is little likelihood

that the number of casualties that arrive during the time that the vehicle is deployed on its round trip will
exceed the vehicle capacity n. If the round trip time is ∼ n/λ, however, there is a significant chance that the
number of newly arrived casualties will exceed the vehicle’s capacity. It is also apparent from the same figure
that if the round trip time is a little longer (by, say, 20%), then there will be a greater than 50% chance
of new casualties exceeding the vehicle’s capacity. Figures 11(b), 11(c) show that small ((b)) to moderate
((C)) increases in casualty arrival rates can easily overwhelm the capacity of the medevac vehicle.

Deployment protocol 2: The vehicle leaves its depot every Ts units of time. This is essentially the
same as Deployment Protocol 1, except that return-to-depot is part of the circuit. In the case of a single
vehicle and single FTF, the analysis is the same. In case we wish to monitor capability-to-respond to
emergency field situations, vehicle inventory may be an important variable in the case of multiple vehicles.
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(a) (b) (c)

Figure 11: The probabilities that more than n casualties will arrive at an FTF during the time interval
T = n/λ. (a) depicts λ = 1; (b) compares λ = 1 (blue) with λ = 1.1 (tan); and (c) depicts λ = 1 (blue) with
λ = 1.9 (tan).

This situation will be left as future work.
Deployment protocol 3: The final protocol is termed call-for-service. Here, the deployment of the

medevac vehicle is initiated by either an explicit call from the FTF requesting transport of the casualties
that have arrived, or it could also be initiated by a probabilistic model of expected numbers of casualties.
(I.e., after a time T < n/λ, the medevac vehicle goes to the FTF under the assumption that an average of
λT casualties will need to be picked up.)

While a detailed analysis of these protocols will be of greatest interest in the case of multiple medevac
vehicles, multiple FTFs, and different distances to primary treatment facilities (which may have different
capacities), the baseline case of a single vehicle (with capacity n) and single FTF and PTF is illuminating.
Consider the case in which n ∼ λT . In the case that the vehicle is busy for T units of time, a certain number
of new casualties will arrive at the FTF. On average, the number will be λT , but in general, the probability
that it will exceed this average is fairly significant. Figure 11 shows this for n=4 and λ = 1. The Figure
11(b) shows how much the probability of exceeding the capacity (n) changes if there is a small change in
the casualty arrival rate, and Figure11(c) shows a very dramatic change - with probability approaching 1 -
when there is a significant change in the arrival rate. It is also of interest to note that any extension (e.g.
due to weather or road conditions) of the deploymnet interval T can also have a dramatically adverse effect
on the vehicle’s ability to meet the need for service.

Open Problems: The simple analysis of the single medevac vehicle serving a single FTF is instructive
in its demonstrating the sensitivity of operations to unforeseen delays and random fluctuations in casualty
arrival rates. Research is needed to understand the possible compounding of effects that can occur if there
are more facilities and more vehicles whose routes through the facility network must be planned For these
problems as well as for the closely related problems described in Section 5, there will be important tradeoffs
between cost of operation and level of resources deployed on the one hand and the possibility of ensuring
that all casualties get the highest level of service that can be provided. Excess capacity will inevitably be
needed to keep mortality rates uniformly low, but of course this capacity comes at a cost. The exact amount
of that cost and its dependence on system parameters can only be determined by further research that is
focused on larger treatment facility networks.

8 Simulation of Flows through the Medical Treatment Network

8.1 Dynamic models of patient flow

In addition to optimizing the system in the steady state it is useful to formulate a dynamic model for
patient flow through the system built from role 2, role 3, and AFB/CONUS. Dynamic modeling can verify
the validity steady flow assumptions and lead to tools for understanding and optimizing transient behavior.
Moreover, though this problem has natural sink and source dynamics, extensions to systems of systems
involving transport will certainly have oscillatory dynamics.

The current concept of operations (CONOPS) for expeditionary medical care emphasizes quickly moving
patients to a series of successively more sophisticated medical facilities that provide the patients with the
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care necessary to ultimately treat their injuries or conditions. A primary to obstruction to planning is
thinking in terms of beds and aeromedical units versus operational practice (i.e. when patients can be
moved). Measuring patient flow is more directly aligned operational practice and represents a common unit
of measurement through the system of systems spectrum. We do not include treatment compartments (as
seen as in RAND TR 1003) in this discussion and model description, but the framework is certainly capable
of doing so.

In addition to the notation that was set in Section 3, we define the following variables.

• Pnj is the population in the jth labelled, type n MTF.

• Let DOW2→3 be the DOW rate per kilometer of transport from role 2 to role 3 facilities. In the
problem statement, this is 1.5% per kilometer.

• Let DOWn
3 be the DOW rate for a role 3 MTF. These numbers are given in Figure 1.

• Let DOW3→AFB be the DOW rate per kilometer of transport from role 3 to AFB. This is 0.5% is the
previous sections of the report.

• Let AFBn be the number that can be sent to an AFB by a type n MTF.

• Let RTDn
3 be the RTD rate for a role 3 MTF.

• Ci is the cauaalty stream count from role 2 facility i

• αij is the proportion of casualities from role 2 facility i to role 3 facility j.

• cap(n) is the capacity in an MTF of type n.

• Let t be time in days.

The equations for MTF population are only weakly coupled through their casualty stream distribution
(i.e. αij). In this case we have the following

dPnj
dt

= χ{Pn
j <cap(n)}

∑
i=1,2

Ciαij(1−DOW2→3)d
ij

︸ ︷︷ ︸
Input from Role 2

− Pnj (DOWn
3 + RTDn

3 )︸ ︷︷ ︸
Leave MTF via DOW, RTD

−min{AFBn, Pnj − Pnj ·DOWn
3 − Pnj · RTDn

3}︸ ︷︷ ︸
To AFB

(16)

We can also define an auxiliary variable Ω to track total DOW count at time t

dΩ

dt
=
∑
i,j

Ciαij

(
1− (1−DOW2→3)d

ij
)

+
∑
j

Pnj DOWn
3

+
∑
j

min{AFBn, Pnj − Pnj ·DOWn
3 − Pnj · RTDn

3}DOW3→AFB .

(17)

8.2 Dynamic behaviors of interest to planning CONOPS

For the following discussion we explore the design space of the MTF. We provide time series data from
numerically integrating the hybrid dynamics present in (16). We remark that obtaining more accurate and
accelerated numerical integration and more complicated switching logic will require technical effort— there
is little off-the-shelf software for hybrid dynamics. For the parameter values prescribed by the problem
statement in Section 2, we verify that a patient does establish a steady state. We follow this discussion up

26



Figure 12: The left hand figure plots time dynamics for individual type 1 and type 2 MTF. The right hand
figure gives the time dynamics for two type 2 MTF acting in tandem. Initial population in both was 15.

Figure 13: In this figure we have increased causualty rate to demostrate appearance of oscillatory dynamics.
The solution curves correspond to a single type 1 MTF

by showing other dynamic behavior in this design space if one allows casualty streams to grow. In particular,
even in this simple scenario, we have oscillatory behavior when we approach MTF capacity.

Figure 12a shows time dynamics with either a single type 1 or single type 2 MTF. Observe that the
patient population obtains a steady steady state which not near the 100 person capacity for a type 1 MTF
whereas a single type 3 oscillates near capacity. The other types of MTF will have similar phenomena. Initial
population in either MTF is initialized to be 15. Figure 12b shows time dynamics of two type 2 facilities
acting in tandem. Figure 9 demonstrates the effects of increased casualty on behavior of a single type 1
MTF. These figures demonstrate that even in a simple problem there will be recurrent/oscillatory dynamics.
Moreover, it is clear that a database of dynamics would allow one to know the shape regions in parameter
space that have desirable or undesirable dynamics.

8.3 Pipeline to database of dynamics and decisions

Our proposed pipeline can be diagrammed as follows.

Model
CM−→ Database of dynamics

O&ML−→ Loss and fitness functions

Here the Model must include parameters and constraints, examples of which are given above. In future
iterations, it’s noted that our pipeline requires not only model input and output, but control over parameters.
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In what follows, we flesh out contents of the Database of dynamics and layer for calculating Loss and

fitness functions. We also give some strategies for implementing
CM−→ and

O&ML−→ .
Constructing a database of dynamics. The work of Mischaikow and collaborators provides a road map

for modern qualitative analysis dynamical system that employs computation in a rigorous way through the
use of algebraic topology (where this can be discrete [10], continuous [11], or hybrid [14]). It has long
been understood [13] that it is critical to understand qualitative behavior as parameters vary. However,
classical methodology falls short when the number of parameters explodes, when dynamics of interest are
only achieved by specific parameter choices, and when exact measurement of parameters is not possible or
likely [17,18]. Course grained models of SoS involving human interaction must be phenomenological (i.e not
from first principles) and therefore will eventually contain parameters for which measurement only makes
sense as an interval of values. This complication and the existence of chaos have severe implications for
computation and modeling: exact simulation for non-exact parameters may lead to dynamics that do not
qualitatively match those of the observed system and in the presence of chaotic dynamics implies behavior of
individual simulated orbits may incorrectly represent the true nature of orbits of the system. These obstacles
led Mischaikow and others to explore coarser, but more robust descriptions of dynamics.

To implement
CM−→ our pipeline will construct a database of dynamics using one of the following depending

on the nature of the problem and model.

1. Proceed as in [10,11,17] by discretizing phase and parameter space for the dynamic model at an a priori
resolution that could be varied for precision or tractability. These discretizations are used to generate
Morse graphs (summaries of global dynamics) and Conley–Morse graphs (a labeling by Conley index)
as follows. The state space of the system is divided into regions at a chosen spatial scale, and the flow
is descritized at a temporal scale. These scales are often given by the limits of measurement of the
system, but can be chosen to be larger to reduce complexity. A directed graph Γ is built by taking a
vertex for each region and a directed edge between two vertices when the flow from one region moves
some of its points into the other. The directed graph Γ then induces the (also directed) Morse graph
G by replacing all vertices in a strongly connected component (SCC) of Γ by a single vertex for G,
and joining two vertices of G by a directed edge when Γ has at least one directed edge connecting
vertices in the corresponding SCCs. The result is called a Morse graph because it is directed acyclic
and describes a Morse flow between regions. Note that each vertex of G corresponds to a neighborhood
of a separatrix of the system, with vertices at the ”bottom” of G corresponding to stable attractors.
Labeling each vertex with the Conley Index, i.e. the homology group of the neighborhood relative to
the region where the flow leaves it (compare this idea to Morse theory, which inspired Conley), gives
a combinatorial approximation/description of the dynamics called the Conley–Morse (CM) graph.

Note that different parameters can give rise to the same CM-graphs, so we obtain a decomposition
of parameter space into regions which have similar dynamics. The keys of the database are the CM-
graphs, and these store the regions of parameter space.

This method is the most general, but is often computationally expensive, we foresee the need to employ
restrictions on parameter space, exploit the geometry and topology of the constraints and parameters,
and carefully devise machine learning exploiting the structure of the database (see [16] and related).

2. Use switching structure to obtain a variation on the approach above [10,11,17] that applies to switching
systems (see Cummins et al [14]). In the previous schema the structure of the database is contained in
what the authors of [10] call the continuation graph. If the system can be given an explicit switching
structure, a much more refined understanding of parameter space and the structure of the database
can be made. This yields huge performance gains

We note that these approaches are not necessarily distinct, one may use switching systems to model dynamics
we know to have transient behavior and use information to generate a subset of interest in discretized
parameter space [15].

Evaluating and generating loss and fitness functions. With a database of dynamics in hand, one will
still want to evaluate loss or fitness to achieve design goals. This could be done adaptively at the time of
computing the database, or could use a stored database to give regions of interest in parameter space. To
be explicit, functionality like those about DOW rates expressed in the Section 2 problem description can
be searched for computing DOW quantities across regions in the database. Since the methods of database
construction above allow for variable resolution of discretization, one can guarantee reasonable database size.
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Evaluation of various loss or fitness functions may require evaluating models over parameter regions—this
can be done efficiently even for large systems of ODEs.

Problem growth in parameter space is likely to be more computationally expensive—implementing and

executing
O&ML−→ will likely require the use of learning methods that exploit the structure of the database.

9 Combinatorial Topology for Parametric Sensitivity and Robust-
ness in System-of-System Designs

Another set of tools that are being considered for applications like the agile field medicine problem considered
in this report come from the theory of order sets, ( [8]). The partial orders in in system designs such as those
considered in Section 4 are amenable to analysis using the language of lattice theory. As parameters such
as casualty flow rates change, the order relationships of treatment schedules, planning for transfer to Role 4
facilities, and other key decisions will change, and we can use tools from partially ordered sets to describe
the magnitude and impact of such changes. Some specific ideas are as follows.

Witness complexes and optimal resource allocation functions In the previous section, there was no
consideration given to differences in cost of one allocation versus another. Cost and other metric consid-
erations can be approached within our framework using the concept of a witness complex. We adopt the
following from [4].

Definition 4. Given two finite sets of points A,B in some d-dimensional space, Rd, such that all distances
‖x − y| with x ∈ A and y ∈ B are different, the abstract simplicial complex W (A,B), called the witness
complex consists of all subsets σ ⊆ B such that for every τ ⊆ σ there exists a point w in A with the property
that every point in τ is closer to w than every point in B\τ .

In the standard terminology of witness complex constructions, points in A are called data points, and
points in B are called landmark points. In the problems of allocating resources to requirements, we relax the
assumption that both A and B lie in the same space, but we assume that there is a pairing metric d(x, y)
that gives a measure of how well suited each element y ∈ B (i.e. each resource) is to each element x ∈ A
(requirement). Every requirement, x, then induces an ordering on the resource set where the resources are
sorted in terms of their pairing metric with respect to x. Every such ordering can be associated with a path
in the Hasse diagram of the Boolean lattice of subsets of B, starting from the point with the smallest pairing
metric with respect to the given requirement and then proceeding to the union of the two most well paired
points (well-paired means smallest value of the pairing metric), followed by the three best paired and so-on.
The witness complex W (A,B) is the maximal abstract simplicial complex whose face poset is contained in
the union of paths over the entire requirement set.

To discuss this construction, we recall the following definition:

Definition 5. (See [4].) Let ∆ be an abstract simplicial complex. The face poset associated with ∆, F(∆),
is the partially ordered set of all non-empty simplices of ∆ with the partial order relation being the inclusion
relation on the set of simplices. �

Fig. 14 shows an example with four landmark points (think of resources as in the previous section) and
five data points (requirements). For the purpose of illustration in the figure, the landmark points and data
points are depicted in the same space. The left hand component of the figure depicts the “distances” between
resources and requirements. The right hand part of the figure is the Boolean lattice of subsets of resources,
and the fat black paths correspond to the “witness” points representing requirements. The witness complex
corresponding to the union of paths on the right of Fig. 14 is depicted in Fig. 15.�

Finally, as we consider enumerative solutions (Sect. 4) and their extensions to relaxed search techniques
(Sect. 6), we will be looking at possible use of the Kendall tau distance [9], to compare orderings of costs,
η, as given in (5) or (14) as key parameters such as casualty flowsTij are varied. The working assumption is
that large values of such a metric indicate a noteworthy sensitivity.
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Figure 14: The landmark points appear in black, with the data points in red. In the Boolean lattice, the
dark solid paths are the distance chains associated with each data point.

Figure 15: The witness complex corresponding to the construction depicted in Fig. 14.

10 Conclusion

A number of interrelated ideas have been explored with the goal of developing new insights on design and
operation of complex systems using methods with roots in algebraic topology and category theory. Many of
the questions that were discussed in the five month course of the project remain only partially answered, and
the research has led to the conclusion that further work should be devoted to the quest for novel approaches
based on heretofore under exploited concepts in abstract mathematics. It is the opinion of the author that
further research on probabilisitic topological and algebraic structures could pay large dividends for the kinds
of applications treated in the report.
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